Systematic Development of a Multi-Objective Design Optimization Process Based on a Surrogate-Assisted Evolutionary Algorithm for Electric Machine Applications

Mingyu Choi, Gilsu Choi, Gerd Bramerdorfer, Edmund Marth

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Surrogate model (SM)-based optimization approaches have gained significant attention in recent years due to their ability to find optimal solutions faster than finite element (FE)-based methods. However, there is limited previous literature available on the detailed process of constructing SM-based approaches for multi-parameter, multi-objective design optimization of electric machines. This paper aims to present a systematic design optimization process for an interior permanent magnet synchronous machine (IPMSM), including a thorough examination of the construction of the SM and the adjustment of its parameters, which are crucial for reducing computation time. The performances of SM candidates such as Kriging, artificial neural networks (ANNs), and support vector regression (SVR) are analyzed, and it is found that Kriging exhibits relatively better performance. The hyperparameters of each SM are fine-tuned using Bayesian optimization to avoid manual and empirical tuning. In addition, the convergence criteria for determining the number of FE computations needed to construct an SM are discussed in detail. Finally, the validity of the proposed design process is verified by comparing the Pareto fronts obtained from the SM-based and conventional FE-based methods. The results show that the proposed procedure can significantly reduce the total computation time by approximately 93% without sacrificing accuracy compared to the conventional FE-based method.

Original languageEnglish
Article number392
JournalEnergies
Volume16
Issue number1
DOIs
StatePublished - Jan 2023

Bibliographical note

Publisher Copyright:
© 2022 by the authors.

Keywords

  • electric machine design
  • interior permanent magnet synchronous machine (IPMSM)
  • metaheuristic optimization algorithm
  • multi-objective design optimization
  • surrogate model (SM)

Fingerprint

Dive into the research topics of 'Systematic Development of a Multi-Objective Design Optimization Process Based on a Surrogate-Assisted Evolutionary Algorithm for Electric Machine Applications'. Together they form a unique fingerprint.

Cite this