Stress modulation and ferroelectric properties of nanograined PbTiO 3 thick films on the different substrates fabricated by aerosol deposition

Jungkeun Lee, Soohwan Lee, Min Geun Choi, Jungho Ryu, Jong Pil Lee, Yun Soo Lim, Dae Yong Jeong

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Nanograined PbTiO3 (PT) thick films were deposited on Si, yttria-stabilized zirconia (YSZ), and Ni substrates using an aerosol deposition (AD) method at room temperature. The AD PT thick films on each different substrate were annealed at 500°C and 700°C for 1 h to increase the crystallinity. The stresses in the PT film were modulated by controlling the difference in the coefficient of thermal expansion (CTE) between the films and substrates during the thermal annealing process. The morphology of the AD PT films was examined from the polycrystalline dense structure (thickness ~8 μm), and the changes in the crystallographic phase, in-plane stresses, and ferroelectric properties in annealed films were investigated. In-plane stress analysis showed that the PT films annealed at 500°C and 700°C on each substrate exhibited compressive stress. Owing to the effects of compressive stress in the PT film, the film showed less tetragonality (c/a ratio) and enhanced ferroelectric behaviors. The change in the polarization-electric field (P-E) hysteresis loop of the PT films was explained by the stress induced from CTE mismatch between the films and substrates.

Original languageEnglish
Pages (from-to)3872-3876
Number of pages5
JournalJournal of the American Ceramic Society
Volume97
Issue number12
DOIs
StatePublished - Dec 2014

Bibliographical note

Publisher Copyright:
© 2014 The American Ceramic Society.

Fingerprint

Dive into the research topics of 'Stress modulation and ferroelectric properties of nanograined PbTiO 3 thick films on the different substrates fabricated by aerosol deposition'. Together they form a unique fingerprint.

Cite this