Salience-guided Ground Factor for Robust Localization of Delivery Robots in Complex Urban Environments

Jooyong Park, Jungwoo Lee, Euncheol Choi, Younggun Cho

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In urban environments for delivery robots, particularly in areas such as campuses and towns, many custom features defy standard road semantic categorizations. Addressing this challenge, our paper introduces a method leveraging Salient Object Detection (SOD) to extract these unique features, employing them as pivotal factors for enhanced robot loop closure and localization. Traditional geometric feature-based localization is hampered by fluctuating illumination and appearance changes. Our preference for SOD over semantic segmentation sidesteps the intricacies of classifying a myriad of non-standardized urban features. To achieve consistent ground features, the Motion Compensate IPM (MC-IPM) technique is implemented, capitalizing on motion for distortion compensation and subsequently selecting the most pertinent salient ground features through moment computations. For thorough evaluation, we validated the saliency detection and localization performances to the real urban scenarios. Project page: https://sites.google.com/view/salient-ground-feature/home.

Original languageEnglish
Title of host publication2024 IEEE International Conference on Robotics and Automation, ICRA 2024
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1701-1708
Number of pages8
ISBN (Electronic)9798350384574
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Robotics and Automation, ICRA 2024 - Yokohama, Japan
Duration: 13 May 202417 May 2024

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Conference

Conference2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Country/TerritoryJapan
CityYokohama
Period13/05/2417/05/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

Fingerprint

Dive into the research topics of 'Salience-guided Ground Factor for Robust Localization of Delivery Robots in Complex Urban Environments'. Together they form a unique fingerprint.

Cite this