Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics

Hui Seon Kim, Ji Youn Seo, Seckin Akin, Elfriede Simon, Maximilian Fleischer, Shaik M. Zakeeruddin, Michael Grӓtzel, Anders Hagfeldt

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

Stabilized power output at maximum power point (mpp) has been considered as one of the most reliable parameters as it provides a key performance indicator for perovskite solar cells (PSCs) revealing the operational stability of the photovoltaic device. Here, we show the effect of selective contact on the power output change under mpp tracking, which closely correlates with the charge recombination dynamics with a time scale of minutes. The normal n-i-p cell architecture comprising cp-TiO2/mp-TiO2/perovskite/spiro-MeOTAD (doped by either Li-TFSI or Zn-TFSI2) and the inverted p-i-n structure, NiOx/perovskite/PCBM, are examined to investigate the specific effect of the nature of the interface on operational stability. The normal structure with Li-TFSI shows a gradual performance decrease at mpp owing to the enhanced recombination at the interface between the perovskite and the spiro-MeOTAD, becoming the dominant recombination process, although the bulk-related recombination is suppressed. On the other hand, the inverted structure demonstrates an improved photocurrent at mpp due to the effectively suppressed recombination both in bulk and at the interface. Remarkably, the deteriorating performance of the normal structure with Li-TFSI at mpp is successfully avoided by replacing Li-TFSI with Zn-TFSI2, leading even to an increased power output with stable performance at mpp.

Original languageEnglish
Pages (from-to)126-131
Number of pages6
JournalNano Energy
Volume61
DOIs
StatePublished - Jul 2019
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2019

Keywords

  • Maximum power point
  • Perovskite
  • Recombination
  • Selective contact
  • Stabilizing feature

Fingerprint

Dive into the research topics of 'Power output stabilizing feature in perovskite solar cells at operating condition: Selective contact-dependent charge recombination dynamics'. Together they form a unique fingerprint.

Cite this