Abstract
In a 3rd Generation Partnership Project Long Term Evolution-Advanced (3GPP LTE-A) uplink, user equipment (UE) has a maximum transmission power limit defined by the UE power class. Generally, the cell edge UE has a higher probability to be constrained by the maximum transmission power level owing to the compensation of the large pathloss. When the UE transmission power is constrained by the maximum level, allocating a higher number of physical resource blocks (PRBs) than the UE power capability can afford will reduce the transmission power to be allocated per PRB, resulting in inefficient use of power resources. To avoid this power inefficiency, the uplink transmission power can be controlled according to the number of PRBs allocated using the power headroom report-based power efficient resource allocation (PHR-PERA) scheme proposed in this paper. Furthermore, adaptive open-loop power control (OL-PC) based on the signal-to-interference-plus-noise ratio (SINR) and the uplink interference is used to improve the cell capacity. By the uplink power control employing the proposed PHR-PERA scheme, the macro and femto UE throughputs were increased by 49.9 and 5 %, respectively, compared to the case of conventional fractional power control (FPC). Additional gains of 21.9 and 4.8 % for macro and femto UE throughputs, respectively, were achieved by adaptive OL-PC. The performance of fast closed-loop power control (CL-PC) based on the received SINR is also evaluated in this paper. The simulation results demonstrate that CL-PC supports OL-PC by compensating the fading effect for the UE uplink SINR to meet the target SINR.
Original language | English |
---|---|
Article number | 233 |
Journal | Eurasip Journal on Wireless Communications and Networking |
Volume | 2015 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2015 |
Bibliographical note
Publisher Copyright:© 2015, Kim et al.
Keywords
- 3GPP LTE-A
- Heterogeneous networks
- Power headroom report
- Uplink power control