Abstract
Metal-organic frameworks are a novel class of organic-inorganic hybrid polymer with potential applications in bioimaging, drug delivery, and ROS therapy. NH2-MIL-125, which is a titanium-based metal organic framework with a large surface area of 1540 m2/g, was synthesized using a hydrothermal method. The material was characterized by powder X-ray diffreaction (PXRD), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM), and N2 isotherm analyses. The size of the polymer was reduced to the nanoscale using a high-frequency sonication process. PEGylation was carried out to improve the stability and bioavailability of the NMOF. The as-synthesized nano-NH2-MIL-125/PEG (NMOF/PEG) exhibited good biocompatibility over the (Cancer) MCF-7 and (Normal) COS-7 cell line. The interaction of NMOF/PEG with the breast cancer cell line (MCF-7) was examined by BIO-TEM analysis and laser confocal imaging. 2′,7′–dichlorofluorescin diacetate (DCFDA) analysis confirmed that NMOF/PEG produced free radicals inside the cancer cell line (MCF-7) upon visible light irradiation. NMOF/PEG absorbed a large amount of DOX (20 wt.% of DOX) and showed pH, and photosensitive release. This controlled drug delivery was attributed to the presence of NH2, Ti group in MOF and a hydroxyl group in PEG. This combination of chemo- and ROS-therapy showed excellent efficiency in killing cancer MCF-7 cells.
Original language | English |
---|---|
Pages (from-to) | 1-10 |
Number of pages | 10 |
Journal | Colloids and Surfaces B: Biointerfaces |
Volume | 160 |
DOIs | |
State | Published - 1 Dec 2017 |
Bibliographical note
Publisher Copyright:© 2017
Keywords
- Doxorubicin
- Drug delivery
- Metal organic frameworks
- NH-MIL-125
- ROS therapy