TY - JOUR
T1 - Near-normalized gene expression profiles in bladder with detrusor overactivity in rats with bladder outlet obstruction after deobstruction
AU - Lee, Tack
AU - Lim, U. Sung
AU - Kang, Dong Hyuk
AU - Jung, Hae Do
AU - Kim, Hyunzu
AU - Choi, Bo Hwa
AU - Kang, Ju Hee
AU - Yoon, Sang Min
AU - Park, Chang Shin
N1 - Publisher Copyright:
© 2017 Korean Continence Society.
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Purpose: The pathophysiological role of detrusor overactivity (DO) in the bladder, which is commonly observed in various bladder diseases, is not well understood. DO appears in bladder outlet obstruction (BOO), and may continue even after subsequent deobstruction. DO therefore provides an excellent opportunity to observe molecular biological changes. Methods: In this study, to understand the molecular effects of persistent DO after BOO induction and deobstruction, we performed awake cystometry on female Sprague-Dawley rats divided into 4 groups: a sham group, a BOO group, a deobstructed group with DO after BOO (DDO), and a deobstructed group without DO after BOO (non-DDO). Total RNA was extracted from the bladder samples, and gene expression profiles were compared between the sham and model groups. Results: DO was observed in 5 of the 6 rats (83%) in the BOO group, and in 6 of the 13 rats (46%) in the deobstructed group. The non-DDO group showed a significantly greater residual volume than the DDO group. Through a clustering analysis of gene expression profiles, we identified 7,532 common upregulated and downregulated genes, the expression of which changed by more than 2 fold. In the BOO group, 898 upregulated and 2,911 downregulated genes were identified. The non-DDO group showed 3,472 upregulated and 4,025 downregulated genes, whereas in the DDO group, only 145 and 72 genes were upregulated and downregulated, respectively. Conclusions: Abnormal function and gene expression profiles in bladders after BOO were normalized in the BOO rats with DO after deobstruction, whereas in those without DO, abnormal function persisted and the gene expression profile became more abnormal. DO may play a protective role against the stress to the bladder induced by BOO and deobstruction as a form of adaptive neuroplasticity.
AB - Purpose: The pathophysiological role of detrusor overactivity (DO) in the bladder, which is commonly observed in various bladder diseases, is not well understood. DO appears in bladder outlet obstruction (BOO), and may continue even after subsequent deobstruction. DO therefore provides an excellent opportunity to observe molecular biological changes. Methods: In this study, to understand the molecular effects of persistent DO after BOO induction and deobstruction, we performed awake cystometry on female Sprague-Dawley rats divided into 4 groups: a sham group, a BOO group, a deobstructed group with DO after BOO (DDO), and a deobstructed group without DO after BOO (non-DDO). Total RNA was extracted from the bladder samples, and gene expression profiles were compared between the sham and model groups. Results: DO was observed in 5 of the 6 rats (83%) in the BOO group, and in 6 of the 13 rats (46%) in the deobstructed group. The non-DDO group showed a significantly greater residual volume than the DDO group. Through a clustering analysis of gene expression profiles, we identified 7,532 common upregulated and downregulated genes, the expression of which changed by more than 2 fold. In the BOO group, 898 upregulated and 2,911 downregulated genes were identified. The non-DDO group showed 3,472 upregulated and 4,025 downregulated genes, whereas in the DDO group, only 145 and 72 genes were upregulated and downregulated, respectively. Conclusions: Abnormal function and gene expression profiles in bladders after BOO were normalized in the BOO rats with DO after deobstruction, whereas in those without DO, abnormal function persisted and the gene expression profile became more abnormal. DO may play a protective role against the stress to the bladder induced by BOO and deobstruction as a form of adaptive neuroplasticity.
KW - DNA
KW - Gene expression profiling
KW - Microarray analysis
KW - Overactive
KW - Urethral obstruction
KW - Urinary bladder
UR - http://www.scopus.com/inward/record.url?scp=85038906946&partnerID=8YFLogxK
U2 - 10.5213/inj.1732774.387
DO - 10.5213/inj.1732774.387
M3 - Article
AN - SCOPUS:85038906946
SN - 2093-4777
VL - 21
SP - 247
EP - 258
JO - International Neurourology Journal
JF - International Neurourology Journal
IS - 4
ER -