Multi-walled carbon nanotubes covalently bonded cellulose composite for chemical vapor sensor

Sungryul Yun, Sang Yeol Yang, Jaehwan Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

A cellulose solution was prepared by dissolving cotton pulp in LiCl/ N,N-Dimethylacetamide (DMAc) solution, and functionalized multi-walled carbon nanotubes (MWCNTs) were reacted with N, N-Carbonyldiimidazoles to obtain MWCNTs-imidazolides. By acylation of cellulose with MWCNTs-imidazolides, MWCNTs were covalently bonded with cellulose chains. Using the product, MWCNTs covalently bonded cellulose composite (M/C) composite was fabricated with mechanical stretching to align MWCNTs with cellulose. Finally, inter-digital comb electrode was formed on the composite via lift-off process. Chemo-electrical properties of the M/C composite in response of absorption of the volatile vapors corresponding to 1-propanol, 1-butanol, methanol and ethanol were investigated. Due to sensitive and reversible expansion/contraction of the M/C composite matrix in response to absorption of each analyte, the M/C composite showed fast and reversible change in chemo-electrical property. The ranking of relative resistance response of the composite was methanol < ethanol < 1-propanol < 1-butanol.

Original languageEnglish
Title of host publicationNanosensors, Biosensors, and Info-Tech Sensors and Systems 2010
DOIs
StatePublished - 2010
EventNanosensors, Biosensors, and Info-Tech Sensors and Systems 2010 - San Diego, CA, United States
Duration: 8 Mar 201011 Mar 2010

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume7646
ISSN (Print)0277-786X

Conference

ConferenceNanosensors, Biosensors, and Info-Tech Sensors and Systems 2010
Country/TerritoryUnited States
CitySan Diego, CA
Period8/03/1011/03/10

Keywords

  • Cellulose
  • Chemical vapor sensor
  • Composite
  • Micro-fabrication
  • Multi-walled carbon nanotubes

Fingerprint

Dive into the research topics of 'Multi-walled carbon nanotubes covalently bonded cellulose composite for chemical vapor sensor'. Together they form a unique fingerprint.

Cite this