Model development and simulation of transient behavior of heavy duty gas turbines

J. H. Kim, T. W. Song, T. S. Kim, S. T. Ro

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

8 Scopus citations

Abstract

This paper describes models for a transient analysis of heavy duty gas turbines, and presents dynamic simulation results of a modern electricity generation engine. Basic governing equations are derived from integral forms of unsteady conservation equations. Mathematical models of each component are described with the aid of unsteady onedimensional governing equations and steady state component characteristics. Special efforts have been made to predict the compressor characteristics including the effect of movable vanes, which govern the running behavior of the whole engine. The derived equation sets are solved numerically by a fully implicit method. A controller model that maintains constant rotational speed and target temperature (turbine inlet or exhaust temperature) is used to simulate real engine operations. Component models, especially those of the compressor, are validated through a comparison with test data. Simulated is the dynamic behavior of a 150MW class engine. The simulated time-dependent variations of engine parameters such as power, rotational speed, fuel, temperatures and guide vane angles are compared with field data. Simulated results are fairly close to the operation data.

Original languageEnglish
Title of host publicationManufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791878576, 9780791878576
DOIs
StatePublished - 2000
Externally publishedYes
EventASME Turbo Expo 2000: Power for Land, Sea, and Air, GT 2000 - Munich, Germany
Duration: 8 May 200011 May 2000

Publication series

NameProceedings of the ASME Turbo Expo
Volume4

Conference

ConferenceASME Turbo Expo 2000: Power for Land, Sea, and Air, GT 2000
Country/TerritoryGermany
CityMunich
Period8/05/0011/05/00

Bibliographical note

Publisher Copyright:
© Copyright 2000 by ASME.

Fingerprint

Dive into the research topics of 'Model development and simulation of transient behavior of heavy duty gas turbines'. Together they form a unique fingerprint.

Cite this