TY - JOUR
T1 - Microporous carbons derived from melamine and isophthalaldehyde
T2 - One-pot condensation and activation in a molten salt medium for efficient gas adsorption
AU - Rehman, Adeela
AU - Park, Soo Jin
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/12/1
Y1 - 2018/12/1
N2 - In the present work, mixture of melamine and isophthalaldehyde undergo simultaneous polymerization, carbonization, and in situ activation in the presence of molten salt media through a single all-in-one route to design microporous carbons with high specific surface areas (~3000 m2/g). The effect of the activation temperature and molten salts on the polymerization process and final texture of the carbon was explored. Carbon materials prepared at 700 °C, in the presence of KOH (referred as MIK-700), exhibited a narrower pore-size distribution ~1.05 nm than those prepared in the presence of the eutectic KOH-NaOH mixture (MIKN). Additionally, MIK-700 possesses an optimum micropore volume (1.33 cm3/g) along with a high nitrogen content (2.66 wt%), resulting in the excellent CO2 adsorption capacity of 9.7 mmol/g at 273 K and 1 bar. Similarly, the high specific area and highest total pore volume play an important role in H2 storage at 77 K, with 4.0 wt% uptake by MIKN-800 (specific surface area and pore volume of 2984 m2/g and 1.98 cm3/g, respectively.) Thus, the facile one-step solvent-free synthesis and activation strategy is an economically favorable avenue for designing microporous carbons as an efficient gas adsorbents.
AB - In the present work, mixture of melamine and isophthalaldehyde undergo simultaneous polymerization, carbonization, and in situ activation in the presence of molten salt media through a single all-in-one route to design microporous carbons with high specific surface areas (~3000 m2/g). The effect of the activation temperature and molten salts on the polymerization process and final texture of the carbon was explored. Carbon materials prepared at 700 °C, in the presence of KOH (referred as MIK-700), exhibited a narrower pore-size distribution ~1.05 nm than those prepared in the presence of the eutectic KOH-NaOH mixture (MIKN). Additionally, MIK-700 possesses an optimum micropore volume (1.33 cm3/g) along with a high nitrogen content (2.66 wt%), resulting in the excellent CO2 adsorption capacity of 9.7 mmol/g at 273 K and 1 bar. Similarly, the high specific area and highest total pore volume play an important role in H2 storage at 77 K, with 4.0 wt% uptake by MIKN-800 (specific surface area and pore volume of 2984 m2/g and 1.98 cm3/g, respectively.) Thus, the facile one-step solvent-free synthesis and activation strategy is an economically favorable avenue for designing microporous carbons as an efficient gas adsorbents.
UR - http://www.scopus.com/inward/record.url?scp=85045735257&partnerID=8YFLogxK
U2 - 10.1038/s41598-018-24308-z
DO - 10.1038/s41598-018-24308-z
M3 - Article
C2 - 29666382
AN - SCOPUS:85045735257
SN - 2045-2322
VL - 8
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 6092
ER -