TY - JOUR
T1 - Microbial community analysis of anaerobic granules in phenol-degrading UASB by next generation sequencing
AU - Na, Jeong Geol
AU - Lee, Mo Kwon
AU - Yun, Yeo Myeong
AU - Moon, Chungman
AU - Kim, Mi Sun
AU - Kim, Dong Hoon
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2016/8/15
Y1 - 2016/8/15
N2 - The objective of this study was to investigate microbial communities in a continuous anaerobic phenol-degrading system using a next generation sequencing tool. The anaerobic granules adapted to phenol were first obtained by repeated-batch operation, which were then inoculated in an up-flow anaerobic sludge blanket reactor (UASB) operated at various organic loading rates (OLRs). Lag periods for both phenol degradation and CH4 production decreased as batch fermentation was repeated, indicating a progressive adaptation of the granules to phenol. In the UASB operation, the highest OLR handled was 6 kg COD/m3/d, in which the attained biogas production rate, phenol degradation, and CH4 contents were 2.1 m3/m3/d, 79.0%, and 75.3%, respectively. Syntrophorhabdus and Clostridium were found to be the dominant bacteria, whose sum occupied around 60% of total bacterial sequences. In particular, there was a significant increase in Syntrophorhabdus (39.2% of total bacterial sequences), known to degrade phenol to benzoate and subsequently to acetate and hydrogen in syntrophic association with a hydrogenotrophic methanogen. In terms of archaea, Methanosaeta (42.1% of total archaeal sequences), and Methanobacterium (24.5% of total archaeal sequences) became dominant as operation continued, which were negligible in the inoculum.
AB - The objective of this study was to investigate microbial communities in a continuous anaerobic phenol-degrading system using a next generation sequencing tool. The anaerobic granules adapted to phenol were first obtained by repeated-batch operation, which were then inoculated in an up-flow anaerobic sludge blanket reactor (UASB) operated at various organic loading rates (OLRs). Lag periods for both phenol degradation and CH4 production decreased as batch fermentation was repeated, indicating a progressive adaptation of the granules to phenol. In the UASB operation, the highest OLR handled was 6 kg COD/m3/d, in which the attained biogas production rate, phenol degradation, and CH4 contents were 2.1 m3/m3/d, 79.0%, and 75.3%, respectively. Syntrophorhabdus and Clostridium were found to be the dominant bacteria, whose sum occupied around 60% of total bacterial sequences. In particular, there was a significant increase in Syntrophorhabdus (39.2% of total bacterial sequences), known to degrade phenol to benzoate and subsequently to acetate and hydrogen in syntrophic association with a hydrogenotrophic methanogen. In terms of archaea, Methanosaeta (42.1% of total archaeal sequences), and Methanobacterium (24.5% of total archaeal sequences) became dominant as operation continued, which were negligible in the inoculum.
KW - Anaerobic processes
KW - Biogas
KW - Bioreactors
KW - Microbial community analysis
KW - Phenol
KW - Waste-Water treatment
UR - http://www.scopus.com/inward/record.url?scp=84964830361&partnerID=8YFLogxK
U2 - 10.1016/j.bej.2016.04.030
DO - 10.1016/j.bej.2016.04.030
M3 - Article
AN - SCOPUS:84964830361
SN - 1369-703X
VL - 112
SP - 241
EP - 248
JO - Biochemical Engineering Journal
JF - Biochemical Engineering Journal
ER -