Abstract
One of the ways to improve the performance of a target task is to learn the transfer of abundant knowledge of a pretrained network. However, learning of the pre-trained network requires high computation capability and large-scale labeled datasets. To mitigate the burden of large-scale labeling, learning in un/self-supervised manner can be a solution. In addition, using un-supervised multi-task learning, a generalized feature representation can be learned. However, un-supervised multi-task learning can be biased to a specific task. To overcome this problem, we propose the metric-based regularization term and temporal task ensemble (TTE) for multi-task learning. Since these two techniques prevent the entire network from learning in a state deviated to a specific task, it is possible to learn a generalized feature representation that appropriately reflects the characteristics of each task without biasing. Experimental results for three target tasks such as classification, object detection and embedding clustering prove that the TTE based multi-task framework is more effective than the state-of-the-art (SOTA) method in improving the performance of a target task.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2903-2912 |
Number of pages | 10 |
ISBN (Electronic) | 9781728150239 |
DOIs | |
State | Published - Oct 2019 |
Event | 17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019 - Seoul, Korea, Republic of Duration: 27 Oct 2019 → 28 Oct 2019 |
Publication series
Name | Proceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019 |
---|
Conference
Conference | 17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019 |
---|---|
Country/Territory | Korea, Republic of |
City | Seoul |
Period | 27/10/19 → 28/10/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
Keywords
- Metric learning
- Multi task learning
- Self supervised learning
- Temporal task ensemble