Abstract
To observe feasibility of membrane distillation (MD) as post-treatment for anaerobic fluidized bed membrane bioreactor (AFMBR), removals of organic and total nitrogen were investigated by using the commercial polyvinylidene difluoride (PVDF) membrane for direct contact membrane distillation (DCMD) at various operational conditions. Test solutions for MD experiments were permeate produced by staged AFMBR (SAF-MBR), permeate from single AFMBR and synthetic wastewater fed to both reactors. Increasing in feed temperature improved permeate flux through PVDF membrane, but it decreased total nitrogen (TN) removal efficiency. Effect of chemical oxygen demand (COD) concentrations in feed solutions for DCMD on TN removal efficiency was almost negligible. However, the COD removal efficiency was lower at lower feed concentration in DCMD operation. At constant feed temperature, TN removal efficiency was improved by increasing a recirculation flow rate on PVDF membrane across DCMD system. Both organic and inorganic fouling were observed on PVDF membrane surface and pore matrix after conducting DCMD operation. The organic fouling on PVDF membrane consisted mainly of protein and fatty acids, supporting that the permeate produced by AFMBR should have potentials to foul the membrane applied in DCMD system as post-treatment.
Original language | English |
---|---|
Pages (from-to) | 756-762 |
Number of pages | 7 |
Journal | Chemosphere |
Volume | 234 |
DOIs | |
State | Published - Nov 2019 |
Bibliographical note
Publisher Copyright:© 2019 Elsevier Ltd
Keywords
- Anaerobic fluidized membrane bioreactor
- Membrane distillation
- Nitrogen removal
- Organic removal