TY - JOUR
T1 - Lysine-cyclodipeptide-based polyamidoamine microparticles
T2 - Balance between the efficiency of copper ion removal and degradation in water
AU - Ju, Sungbin
AU - Eom, Youngho
AU - Kim, Sang Youl
AU - Hwang, Sung Yeon
AU - Hwang, Dong Soo
AU - Oh, Dongyeop X.
AU - Park, Jeyoung
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2020/7/1
Y1 - 2020/7/1
N2 - A key requirement for materials that adsorb pollutants in aqueous media is the balance between efficiency and biodegradation owing to rising microplastic pollution. Hyperbranched polyamidoamine-based microhydrogel particles from ethylene diamine (EDA) monomer demonstrate high absorbance activity for removing heavy metal ions, yet are vulnerable to hydrolysis. Here, we copolymerize lysine diketopiperazine (L-DKP) and EDA with N,N′-methylenebisacrylamide via a Michael addition reaction-mediated inverse suspension polymerization to obtain highly efficient Cu2+-absorbing materials with controlled degradation in aqueous media. When the L-DKP content is increased, which replaces EDA, degradation is typically prevented at the cost of absorption capacity. At optimal L-DKP content (20 mol% per fed diamine monomers), the microparticle exhibits a performance of 159 Cu2+-mg/g, which is comparable to that of the EDA-only microparticles, but with higher degradation resistance, as only 38 wt% was lost at 37 °C after two weeks. During the hydrolysis of microparticles without L-DKP, the absorbed Cu2+ ions were released, polluting the aquatic environment. In the presence of L-DKP, Cu2+ ions were significantly retained within the working time. In contrast to synthetic microbeads such as polystyrene, accidently leaked L-DKP-based microparticles decompose within six months. These results provide an industrial, environment-friendly, and long-lasting absorbent for water purification.
AB - A key requirement for materials that adsorb pollutants in aqueous media is the balance between efficiency and biodegradation owing to rising microplastic pollution. Hyperbranched polyamidoamine-based microhydrogel particles from ethylene diamine (EDA) monomer demonstrate high absorbance activity for removing heavy metal ions, yet are vulnerable to hydrolysis. Here, we copolymerize lysine diketopiperazine (L-DKP) and EDA with N,N′-methylenebisacrylamide via a Michael addition reaction-mediated inverse suspension polymerization to obtain highly efficient Cu2+-absorbing materials with controlled degradation in aqueous media. When the L-DKP content is increased, which replaces EDA, degradation is typically prevented at the cost of absorption capacity. At optimal L-DKP content (20 mol% per fed diamine monomers), the microparticle exhibits a performance of 159 Cu2+-mg/g, which is comparable to that of the EDA-only microparticles, but with higher degradation resistance, as only 38 wt% was lost at 37 °C after two weeks. During the hydrolysis of microparticles without L-DKP, the absorbed Cu2+ ions were released, polluting the aquatic environment. In the presence of L-DKP, Cu2+ ions were significantly retained within the working time. In contrast to synthetic microbeads such as polystyrene, accidently leaked L-DKP-based microparticles decompose within six months. These results provide an industrial, environment-friendly, and long-lasting absorbent for water purification.
KW - Degradation
KW - Diketopiperazine
KW - Heavy metal ion removal
KW - Microparticle
KW - Polyamidoamine
KW - Water purification
UR - http://www.scopus.com/inward/record.url?scp=85088363652&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2019.123493
DO - 10.1016/j.cej.2019.123493
M3 - Article
AN - SCOPUS:85088363652
SN - 1385-8947
VL - 391
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 123493
ER -