Interpretable Embedding Procedure Knowledge Transfer via Stacked Principal Component Analysis and Graph Neural Network

Seunghyun Lee, Byung Cheol Song

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Knowledge distillation (KD) is one of the most useful techniques for light-weight neural networks. Although neural networks have a clear purpose of embedding datasets into the low-dimensional space, the existing knowledge was quite far from this purpose and provided only limited information. We argue that good knowledge should be able to interpret the embedding procedure. This paper proposes a method of generating interpretable embedding procedure (IEP) knowledge based on principal component analysis, and distilling it based on a message passing neural network. Experimental results show that the student network trained by the proposed KD method improves 2.28% in the CIFAR100 dataset, which is higher performance than the state-of-the-art (SOTA) method. We also demonstrate that the embedding procedure knowledge is interpretable via visualization of the proposed KD process. The implemented code is available at https://github.com/sseung0703/IEPKT.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Pages8297-8305
Number of pages9
ISBN (Electronic)9781713835974
StatePublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021
Volume9B

Conference

Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online
Period2/02/219/02/21

Bibliographical note

Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Fingerprint

Dive into the research topics of 'Interpretable Embedding Procedure Knowledge Transfer via Stacked Principal Component Analysis and Graph Neural Network'. Together they form a unique fingerprint.

Cite this