TY - JOUR
T1 - Hybrid forward osmosis/membrane distillation integrated with anaerobic fluidized bed bioreactor for advanced wastewater treatment
AU - Kwon, Daeeun
AU - Bae, Woobin
AU - Kim, Jeonghwan
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/15
Y1 - 2021/2/15
N2 - Forward osmosis (FO)-membrane distillation (MD) process was integrated with anaerobic fluidized bed bioreactor (AFBR) to advance wastewater treatment. Low removal efficiency of nutrients such as ammonia nitrogen was improved significantly by combining FO-MD process with AFBR. The MD membrane was applied to concentrate the draw solution (DS) which can be diluted by FO filtration. By using 1 M of NaCl as DS, about 80% of ammonia nitrogen was further removed by the FO membrane while the phosphorous was removed almost completely (99%). However, the accumulation of ammonia nitrogen in DS and the reverse salt flux through the FO membrane was unavoidable. Nevertheless, combining MD membrane produced excellent removal efficiency yielding only 4 and 5.6 mg/L of ammonia nitrogen and chemical oxygen demand (COD) in MD permeate, respectively at 15 ℃ of transmembrane temperature. Alternatively, there is the possibility that the FO-MD process can be superior to concentrate resources such as nitrogen and phosphorous present in AFBR. The reverse salt flux from DS into AFBR bulk suspension did not show adverse effects on the performances of bioreactor with respect to COD removal efficiency, conductivity and methane production during operational period. Deposit of the fouling layer on FO membrane was also observed, but the fouling on MD membrane was not severe probably because crystallization rate could be retarded by diluting the DS during FO filtration.
AB - Forward osmosis (FO)-membrane distillation (MD) process was integrated with anaerobic fluidized bed bioreactor (AFBR) to advance wastewater treatment. Low removal efficiency of nutrients such as ammonia nitrogen was improved significantly by combining FO-MD process with AFBR. The MD membrane was applied to concentrate the draw solution (DS) which can be diluted by FO filtration. By using 1 M of NaCl as DS, about 80% of ammonia nitrogen was further removed by the FO membrane while the phosphorous was removed almost completely (99%). However, the accumulation of ammonia nitrogen in DS and the reverse salt flux through the FO membrane was unavoidable. Nevertheless, combining MD membrane produced excellent removal efficiency yielding only 4 and 5.6 mg/L of ammonia nitrogen and chemical oxygen demand (COD) in MD permeate, respectively at 15 ℃ of transmembrane temperature. Alternatively, there is the possibility that the FO-MD process can be superior to concentrate resources such as nitrogen and phosphorous present in AFBR. The reverse salt flux from DS into AFBR bulk suspension did not show adverse effects on the performances of bioreactor with respect to COD removal efficiency, conductivity and methane production during operational period. Deposit of the fouling layer on FO membrane was also observed, but the fouling on MD membrane was not severe probably because crystallization rate could be retarded by diluting the DS during FO filtration.
KW - Anaerobic fluidized bed bioreactor
KW - Forward osmosis
KW - Membrane distillation
KW - Nutrients removal
KW - Reverse salt flux
UR - http://www.scopus.com/inward/record.url?scp=85092208581&partnerID=8YFLogxK
U2 - 10.1016/j.jhazmat.2020.124160
DO - 10.1016/j.jhazmat.2020.124160
M3 - Article
C2 - 33049631
AN - SCOPUS:85092208581
SN - 0304-3894
VL - 404
JO - Journal of Hazardous Materials
JF - Journal of Hazardous Materials
M1 - 124160
ER -