Abstract
In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the OPV devices depends significantly on the fiber morphology. The evaporation rate of a solvent at various relative humidity was measured to investigate the effects of the relative humidity during electrospinning process. The beaded nanofiber morphology of electrospun fibers was originated due to slow solvent evaporation rate under high humidity conditions. To increase the evaporation rate under high humidity conditions, warm air was applied to the electrospinning system. The beads that would have formed on the electrospun fibers were completely avoided, and the power conversion efficiencies of OPV devices fabricated under high humidity conditions could be restored. These results highlight the simplicity and effectiveness of the proposed method for improving the reproducibility of electrospun nanofibers and performances of devices consisting of the electrospun nanofibers, regardless of the relative humidity.
Original language | English |
---|---|
Pages (from-to) | 4481-4487 |
Number of pages | 7 |
Journal | ACS applied materials & interfaces |
Volume | 7 |
Issue number | 8 |
DOIs | |
State | Published - 4 Mar 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 American Chemical Society.
Keywords
- conjugated polymer
- electrospinning
- nanofiber
- photovoltaic
- solar cell