Gas turbine performance enhancement by inlet air cooling and coolant pre-cooling using an absorption chiller

Hyun Min Kwon, Jeong Ho Kim, Tong Seop Kim

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

The gas turbine combined cycle is the most mature and efficient power generation system. While enhancing design performance continuously, a parallel effort to make up for the shortcomings of the gas turbine should be pursued. The most critical drawback is the large power loss in hot season when electricity demand is usually the highest. Therefore, it is important to implement an effective power boosting measure in gas turbine based power plants, especially in areas where the annual average temperature is much higher than the standard design ambient temperature. The simplest method in general is to reduce the gas turbine inlet air temperature by any means. Several schemes are commercially available, such as mechanical chilling, evaporative cooling, inlet fogging and absorption chilling. All of them have merits and demerits, either thermodynamically and economically. In this study, we focused our interest on the absorption chilling method. Theoretically, absorption chilling provides as much cooling effect (air temperature reduction) as the mechanical chilling, while electric power consumption is negligibly small. A distinct feature of an absorption chiller in contrast to a mechanical chiller is that thermal energy (heat) is needed to drive the chilling system. In this research, we propose an innovative idea of making the independent heat supply unnecessary. The new method provides simultaneous cooling of the turbine coolant and the inlet air using an absorption chiller. The inlet cooling and coolant precooling boost the gas turbine power synergistically. We predicted the system performance using cycle simulation and compared it with that of the conventional mechanical cooling system.

Original languageEnglish
Title of host publicationCoal, Biomass and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791849743
DOIs
StatePublished - 2016
EventASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016 - Seoul, Korea, Republic of
Duration: 13 Jun 201617 Jun 2016

Publication series

NameProceedings of the ASME Turbo Expo
Volume3

Conference

ConferenceASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016
Country/TerritoryKorea, Republic of
CitySeoul
Period13/06/1617/06/16

Bibliographical note

Publisher Copyright:
Copyright © 2016 by ASME.

Fingerprint

Dive into the research topics of 'Gas turbine performance enhancement by inlet air cooling and coolant pre-cooling using an absorption chiller'. Together they form a unique fingerprint.

Cite this