Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices

T. Kim, J. H. Kang, S. J. Yang, S. J. Sung, Y. S. Kim, C. R. Park

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

Reduced graphene oxide-based films were prepared to assess their effects as gas barriers on the stability of organic photovoltaic (OPV) devices. The direct spin-casting of a graphene oxide suspension onto an aluminum electrode was performed to encapsulate the associated OPV device with a reduced graphene oxide film. The lifetime of the OPV device after the reduction process was found to be increased by a factor of 50. The gas barrier properties of a graphene oxide layer are closely related to its surface roughness and dispersibility. Furthermore, these gas barrier properties can be enhanced by controlling the thermal reduction conditions. The thermal reduction of a graphene oxide film at a low heating rate results in a low water vapor permeability, only 0.1% of that of an as-prepared polyethylene naphthalate film. These results indicate that the dispersibility, surface roughness, and reduction conditions of a graphene oxide film significantly influence its gas barrier performance. Further investigations of the reduction of graphene oxide films are expected to enable further improvements in performance.

Original languageEnglish
Pages (from-to)3403-3411
Number of pages9
JournalEnergy and Environmental Science
Volume7
Issue number10
DOIs
StatePublished - 1 Oct 2014
Externally publishedYes

Bibliographical note

Publisher Copyright:
© The Royal Society of Chemistry 2014.

Fingerprint

Dive into the research topics of 'Facile preparation of reduced graphene oxide-based gas barrier films for organic photovoltaic devices'. Together they form a unique fingerprint.

Cite this