Environment-friendly zinc oxide nanorods-grown cellulose nanofiber nanocomposite and its electromechanical and uv sensing behaviors

Lindong Zhai, Hyun Chan Kim, Ruth M. Muthoka, Muhammad Latif, Hussein Alrobei, Rizwan A. Malik, Jaehwan Kim

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

This paper reports a genuine environment-friendly hybrid nanocomposite made by grow-ing zinc oxide (ZnO) nanorods on cellulose nanofiber (CNF) film. The nanocomposite preparation, characterizations, electromechanical property, and ultraviolet (UV) sensing performance are ex-plained. CNF was extracted from the pulp by combining the 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation and the aqueous counter collision (ACC) methods. The CNF film was fabricated using doctor blade casting, and ZnO nanorods were grown on the CNF film by seeding and by a hydrothermal method. Morphologies, optical transparency, mechanical and electromechanical properties, and UV sensing properties were examined. The nanocomposite’s optical transparency was more than 80%, and the piezoelectric charge constant d31 was 200 times larger than the CNF film. The UV sensing performance of the prepared ZnO-CNF nanocomposites was tested in terms of ZnO concentration, UV irradiance intensity, exposure side, and electrode materials. A large aspect ratio of ZnO nanorods and a work function gap between ZnO nanorods and the electrode material are essential for improving the UV sensing performance. However, these conditions should be compromised with transparency. The use of CNF for ZnO-cellulose hybrid nanocomposite is beneficial not only for electromechanical and UV sensing properties but also for high mechanical properties, renewability, biocompatibility, flexibility, non-toxicity, and transparency.

Original languageEnglish
Article number1419
JournalNanomaterials
Volume11
Issue number6
DOIs
StatePublished - Jun 2021

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Cellulose nanofiber
  • Electromechanical property
  • Nanocomposite
  • UV sensing
  • Zinc oxide

Fingerprint

Dive into the research topics of 'Environment-friendly zinc oxide nanorods-grown cellulose nanofiber nanocomposite and its electromechanical and uv sensing behaviors'. Together they form a unique fingerprint.

Cite this