TY - JOUR
T1 - Enhanced sensitivity towards hydrogen by a TiN interlayer in Pd-decorated SnO2 nanowires
AU - Badie, Clémence
AU - Lee, Jae Hyoung
AU - Mirzaei, Ali
AU - Kim, Hyoun Woo
AU - Sayegh, Syreina
AU - Bechelany, Mikhael
AU - Santinacci, Lionel
AU - Kim, Sang Sub
N1 - Publisher Copyright:
© 2023 The Royal Society of Chemistry.
PY - 2023/5/15
Y1 - 2023/5/15
N2 - In this study, we designed a new structure based on Pd-decorated TiN-coated SnO2 nanowires (NWs) for the selective detection of H2 gas. Initially, SnO2 NWs were prepared by a simple vapor-liquid-solid growth method. Then, atomic layer deposition (ALD) was used to grow a continuous TiN layer and, subsequently, Pd nanoparticles on the NW networks. The TiN thickness was precisely set to 0.5, 1, 2, and 5 nm, while the Pd loading was adjusted by varying the number of ALD cycles (25 to 200 cycles). Various characterization techniques revealed the amorphous nature of TiN, a homogeneous dispersion of Pd NPs and the uniform morphology and single crystallinity of the SnO2 NWs. H2 gas sensing studies revealed that the sensor with a TiN thickness of 1 nm exhibited the highest response. Pd decoration further improved the response to H2 gas. Hence, the Pd-decorated gas sensor with a 1 nm-thick TiN layer showed the highest H2 sensing performance at 250 °C among all gas sensors. Due to the unique chemical reaction between Pd and hydrogen, the fabricated sensor shows excellent performance in detecting hydrogen gas. The underlying sensing mechanism is discussed in detail. The optimized sensor has a sensitivity of 8.18 for hydrogen gas, which is four times higher than that of other gas species, showing that it is suitable for detecting hydrogen gas. We believe that this new design is a highly valuable gas sensor for the real application of H2 monitoring with high selectivity.
AB - In this study, we designed a new structure based on Pd-decorated TiN-coated SnO2 nanowires (NWs) for the selective detection of H2 gas. Initially, SnO2 NWs were prepared by a simple vapor-liquid-solid growth method. Then, atomic layer deposition (ALD) was used to grow a continuous TiN layer and, subsequently, Pd nanoparticles on the NW networks. The TiN thickness was precisely set to 0.5, 1, 2, and 5 nm, while the Pd loading was adjusted by varying the number of ALD cycles (25 to 200 cycles). Various characterization techniques revealed the amorphous nature of TiN, a homogeneous dispersion of Pd NPs and the uniform morphology and single crystallinity of the SnO2 NWs. H2 gas sensing studies revealed that the sensor with a TiN thickness of 1 nm exhibited the highest response. Pd decoration further improved the response to H2 gas. Hence, the Pd-decorated gas sensor with a 1 nm-thick TiN layer showed the highest H2 sensing performance at 250 °C among all gas sensors. Due to the unique chemical reaction between Pd and hydrogen, the fabricated sensor shows excellent performance in detecting hydrogen gas. The underlying sensing mechanism is discussed in detail. The optimized sensor has a sensitivity of 8.18 for hydrogen gas, which is four times higher than that of other gas species, showing that it is suitable for detecting hydrogen gas. We believe that this new design is a highly valuable gas sensor for the real application of H2 monitoring with high selectivity.
UR - http://www.scopus.com/inward/record.url?scp=85161590860&partnerID=8YFLogxK
U2 - 10.1039/d3ta00020f
DO - 10.1039/d3ta00020f
M3 - Article
AN - SCOPUS:85161590860
SN - 2050-7488
VL - 11
SP - 12202
EP - 12213
JO - Journal of Materials Chemistry A
JF - Journal of Materials Chemistry A
IS - 23
ER -