Abstract
Extracellular vesicles (EVs) have attracted particular interest in various fields of biology and medicine. However, one of the major hurdles in the clinical application of EV-based therapy is their low production yield. We recently developed cell-derived EV-mimetic nanovesicles (NVs) by extruding cells serially through filters with diminishing pore sizes (10, 5, and 1 μm). Here, we demonstrate in diabetic mice that embryonic stem cell (ESC)-derived EV-mimetic NVs (ESC-NVs) completely restore erectile function (~96% of control values) through enhanced penile angiogenesis and neural regeneration in vivo, whereas ESC partially restores erectile function (~77% of control values). ESC-NVs promoted tube formation in primary cultured mouse cavernous endothelial cells and pericytes under high-glucose condition in vitro; and accelerated microvascular and neurite sprouting from aortic ring and major pelvic ganglion under high-glucose condition ex vivo, respectively. ESC-NVs enhanced the expression of angiogenic and neurotrophic factors (hepatocyte growth factor, angiopoietin-1, nerve growth factor, and neurotrophin-3), and activated cell survival and proliferative factors (Akt and ERK). Therefore, it will be a better strategy to use ESC-NVs than ESCs in patients with erectile dysfunction refractory to pharmacotherapy, although it remains to be solved for future clinical application of ESC.
Original language | English |
---|---|
Article number | 20072 |
Journal | Scientific Reports |
Volume | 9 |
Issue number | 1 |
DOIs | |
State | Published - 1 Dec 2019 |
Bibliographical note
Publisher Copyright:© 2019, The Author(s).