Abstract
Aluminum oxide (Al 2O 3) nanofibers were treated thermally under an ammonia (NH 3) gas stream balanced by nitrogen to form a thin aluminum nitride (AlN) layer on the nanofibers, resulting in the enhancement of thermal conductivity of Al 2O 3/epoxy nanocomposites. The micro-structural and morphological properties of the NH 3- assisted thermally-treated Al 2O 3 nanofibers were characterized by X-ray diffraction (XRD) and atomic force microscopy (AEM), respectively. The surface characteristics and pore structures were observed by X-ray photoelectron spectroscopy (XPS), Zeta-potential and N 2/77 K isothermal adsorptions. From the results, the formation of AlN on Al 2O 3 nanofibers was confirmed by XRD and XPS. The thermal conductivity (TC) of the modified Al 2O 3 nanofibers/epoxy composites increased with increasing treated temperatures. On the other hand, the severely treated Al 2O 3/epoxy composites showed a decrease in TC, resulting from a decrease in the probability of heat-transfer networks between the filler and matrix in this system due to the aggregation of nanofiber fillers.
Original language | English |
---|---|
Pages (from-to) | 3258-3264 |
Number of pages | 7 |
Journal | Bulletin of the Korean Chemical Society |
Volume | 33 |
Issue number | 10 |
DOIs | |
State | Published - 20 Oct 2012 |
Keywords
- Aluminium oxide
- Aluminum nitride
- Thermal conductivity
- Thermal nitrification