Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability

Saujan V. Sivaram, Naechul Shin, Li Wei Chou, Michael A. Filler

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Surface adsorbates are well-established choreographers of material synthesis, but the presence and impact of these short-lived species on semiconductor nanowire growth are largely unknown. Here, we use infrared spectroscopy to directly observe surface adsorbates, hydrogen atoms and methyl groups, chemisorbed to the nanowire sidewall and show they are essential for the stable growth of Ge nanowires via the vapor-liquid-solid mechanism. We quantitatively determine the surface coverage of hydrogen atoms during nanowire growth by comparing ν(Ge-H) absorption bands from operando measurements (i.e., during growth) to those after saturating the nanowire sidewall with hydrogen atoms. This method provides sub-monolayer chemical information at relevant reaction conditions while accounting for the heterogeneity of sidewall surface sites and their evolution during elongation. Our findings demonstrate that changes to surface bonding are critical to understand Ge nanowire synthesis and provide new guidelines for rationally selecting catalysts, forming heterostructures, and controlling dopant profiles. (Figure Presented).

Original languageEnglish
Pages (from-to)9861-9869
Number of pages9
JournalJournal of the American Chemical Society
Volume137
Issue number31
DOIs
StatePublished - 12 Aug 2015

Bibliographical note

Publisher Copyright:
© 2015 American Chemical Society.

Fingerprint

Dive into the research topics of 'Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability'. Together they form a unique fingerprint.

Cite this