TY - JOUR
T1 - Dark background–surface enhanced Raman spectroscopic detection of nanoplastics
T2 - Thermofluidic strategy
AU - Park, Changmin
AU - Lim, Dohyun
AU - Kong, Seung Mo
AU - Won, Nam Il
AU - Na, Yang Ho
AU - Shin, Dongha
N1 - Publisher Copyright:
© 2023 Elsevier Ltd
PY - 2023/10/1
Y1 - 2023/10/1
N2 - This study aims to develop a cost-effective and time-efficient method for detecting nanoplastics, which have recently garnered significant attention due to their potential harmful impact on the water environment (XiaoZhi, 2021; Gigault et al., 2021; Mitrano et al., 2021; Ferreira et al., 2019). Although several techniques are available to accumulate data on microplastics, there is currently no universally accepted analytical technique for detecting nanoplastics (Gigault et al., 2021; Mitrano et al., 2021; Mitrano et al., 2019; Cai et al., 2021a; Allen et al., 2022). In this study, we have developed a substrate that exhibits Surface-enhanced Raman scattering (SERS) (Zhou et al., 2021; Lv et al., 2020; Lê et al., 2021; Hu et al., 2022; Chang et al., 2022; Yang et al., 2022; Xu et al., 2020; Jeon et al., 2021; Lee and Fang, 2022; Vélez-Escamilla and Contreras-Torres, 2022; Liu et al., 2022; Xie et al., 2023) activity over a large area and a dark background in optical (darkfield mode) vision, enabling the detection of sparkling nanoplastics on the substrate. This darkfield-based strategy allows for the point-by-point detection of single nanoplastics, offering cost and time-saving advantages over other resource-intensive analytical techniques. Our findings reveal the presence of PP nanoplastics in commonly used laboratory equipment, individual PE nanoplastics from a hot water-contained commercial paper cup, and the first detection of natural nanoplastics in coastal seawater. We believe that this technique will have a universal application in establishing a global map of nanoplastics and advancing our understanding of the environmental life cycle of plastics.
AB - This study aims to develop a cost-effective and time-efficient method for detecting nanoplastics, which have recently garnered significant attention due to their potential harmful impact on the water environment (XiaoZhi, 2021; Gigault et al., 2021; Mitrano et al., 2021; Ferreira et al., 2019). Although several techniques are available to accumulate data on microplastics, there is currently no universally accepted analytical technique for detecting nanoplastics (Gigault et al., 2021; Mitrano et al., 2021; Mitrano et al., 2019; Cai et al., 2021a; Allen et al., 2022). In this study, we have developed a substrate that exhibits Surface-enhanced Raman scattering (SERS) (Zhou et al., 2021; Lv et al., 2020; Lê et al., 2021; Hu et al., 2022; Chang et al., 2022; Yang et al., 2022; Xu et al., 2020; Jeon et al., 2021; Lee and Fang, 2022; Vélez-Escamilla and Contreras-Torres, 2022; Liu et al., 2022; Xie et al., 2023) activity over a large area and a dark background in optical (darkfield mode) vision, enabling the detection of sparkling nanoplastics on the substrate. This darkfield-based strategy allows for the point-by-point detection of single nanoplastics, offering cost and time-saving advantages over other resource-intensive analytical techniques. Our findings reveal the presence of PP nanoplastics in commonly used laboratory equipment, individual PE nanoplastics from a hot water-contained commercial paper cup, and the first detection of natural nanoplastics in coastal seawater. We believe that this technique will have a universal application in establishing a global map of nanoplastics and advancing our understanding of the environmental life cycle of plastics.
KW - Dark-field scattering
KW - Microplastics
KW - Nanoplastics
KW - Surface enhanced Raman spectroscopy
KW - Thermofluidic
UR - http://www.scopus.com/inward/record.url?scp=85167963659&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2023.120459
DO - 10.1016/j.watres.2023.120459
M3 - Article
C2 - 37597446
AN - SCOPUS:85167963659
SN - 0043-1354
VL - 244
JO - Water Research
JF - Water Research
M1 - 120459
ER -