Abstract
Since most facial emotion recognition (FER) methods significantly rely on supervision information, they have a limit to analyzing emotions independently of persons. On the other hand, adversarial learning is a well-known approach for generalized representation learning because it never requires supervision information. This paper presents a new adversarial learning for FER. In detail, the proposed learning enables the FER network to better understand complex emotional elements inherent in strong emotions by adversarially learning weak emotion samples based on strong emotion samples. As a result, the proposed method can recognize the emotions independently of persons because it understands facial expressions more accurately. In addition, we propose a contrastive loss function for efficient adversarial learning. Finally, the proposed adversarial learning scheme was theoretically verified, and it was experimentally proven to show state of the art (SOTA) performance.
Original language | English |
---|---|
Title of host publication | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 5948-5956 |
Number of pages | 9 |
ISBN (Electronic) | 9781713835974 |
DOIs | |
State | Published - 2021 |
Event | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online Duration: 2 Feb 2021 → 9 Feb 2021 |
Publication series
Name | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
Volume | 7 |
Conference
Conference | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
City | Virtual, Online |
Period | 2/02/21 → 9/02/21 |
Bibliographical note
Publisher Copyright:Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.