Content-Adaptive and Attention-Based Network for Hand Gesture Recognition

Zongjing Cao, Yan Li, Byeong Seok Shin

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

For hand gesture recognition, recurrent neural networks and 3D convolutional neural networks are the most commonly used methods for learning the spatial–temporal features of gestures. The calculation of the hidden state of the recurrent neural network at a specific time is determined by both input at the current time and the output of the hidden state at the previous time, therefore limiting its parallel computation. The large number of weight parameters that need to be optimized leads to high computational costs associated with 3D convolution-based methods. We introduced a transformer-based network for hand gesture recognition, which is a completely self-attentional architecture without any convolution or recurrent layers. The framework classifies hand gestures by focusing on the sequence information of the whole gesture video. In addition, we introduced an adaptive sampling strategy based on the video content to reduce the input of gesture-free frames to the model, thus reducing computational consumption. The proposed network achieved 83.2% and 93.8% recognition accuracy on two publicly available benchmark datasets, NVGesture and EgoGesture datasets, respectively. The results of extensive comparison experiments show that our proposed approach outperforms the existing state-of-the-art gesture recognition systems.

Original languageEnglish
Article number2041
JournalApplied Sciences (Switzerland)
Volume12
Issue number4
DOIs
StatePublished - 1 Feb 2022

Bibliographical note

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Attention mechanism
  • Content-adaptive
  • Gesture recognition
  • Hand detection

Fingerprint

Dive into the research topics of 'Content-Adaptive and Attention-Based Network for Hand Gesture Recognition'. Together they form a unique fingerprint.

Cite this