Biomimetic repeat protein derived from Xenopus tropicalis for fibrous scaffold fabrication

Yunkyeoung Kwon, Yun Jung Yang, Dooyup Jung, Byeong Hee Hwang, Hyung Joon Cha

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Collagen, silk, and elastin are the fibrous proteins consist of representative amino acid repeats. Because these proteins exhibited distinguishing mechanical properties, they have been utilized in diverse applications, such as fiber-based sensors, filtration membranes, supporting materials, and tissue engineering scaffolds. Despite their infinite prevalence and potential, most studies have only focused on a few repeat proteins. In this work, the hypothetical protein with a repeat motif derived from the frog Xenopus tropicalis was obtained and characterized for its potential as a novel protein-based material. The codon-optimized recombinant frog repeat protein, referred to as 'xetro', was produced at a high rate in a bacterial system, and an acid extraction-based purified xetro protein was successfully fabricated into microfibers and nanofibers using wet spinning and electrospinning, respectively. Specifically, the wet-spun xetro microfibers demonstrated about 2- and 1.5-fold higher tensile strength compared with synthetic polymer polylactic acid and cross-linked collagen, respectively. In addition, the wet-spun xetro microfibers showed about sevenfold greater stiffness than collagen. Therefore, the mass production potential and greater mechanical properties of the xetro fiber may result in these fibers becoming a new promising fiber-based material for biomedical engineering.

Original languageEnglish
Pages (from-to)659-664
Number of pages6
JournalBiopolymers
Volume103
Issue number12
DOIs
StatePublished - 1 Dec 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2015 Wiley Periodicals, Inc.

Keywords

  • fiber
  • mechanical property
  • protein-based material
  • recombinant protein
  • repeat motif

Fingerprint

Dive into the research topics of 'Biomimetic repeat protein derived from Xenopus tropicalis for fibrous scaffold fabrication'. Together they form a unique fingerprint.

Cite this