TY - JOUR
T1 - Bioinspired Synaptic Branched Network within Quasi-Solid Polymer Electrolyte for High-Performance Microsupercapacitors
AU - Lee, Dawoon
AU - Yang, Mino
AU - Choi, U. Hyeok
AU - Kim, Jaekyun
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/7/11
Y1 - 2024/7/11
N2 - The branched network-driven ion solvating quasi-solid polymer electrolytes (QSPEs) are prepared via one-step photochemical reaction. A poly(ethylene glycol diacrylate) (PEGDA) is combined with an ion-conducting solvate ionic liquid (SIL), where tetraglyme (TEGDME), which acts like interneuron in the human brain and creates branching network points, is mixed with EMIM-NTf2 and Li-NTf2. The QSPE exhibits a unique gyrified morphology, inspired by the cortical surface of human brain, and features well-refined nano-scale ion channels. This human-mimicking method offers excellent ion transport capabilities through a synaptic branched network with high ionic conductivity (σDC ≈ 1.8 mS cm−1 at 298 K), high dielectric constant (εs ≈ 125 at 298 K), and strong ion solvation ability, in addition to superior mechanical flexibility. Furthermore, the interdigitated microsupercapacitors (MSCs) based on the QSPE present excellent electrochemical performance of high energy (E = 5.37 µWh cm−2) and power density (P = 2.2 mW cm−2), long-term cycle stability (≈94% retention after 48 000 cycles), and mechanical stability (>94% retention after continuous bending and compressing deformation). Moreover, these MSC devices have flame-retarding properties and operate effectively in air and water across a wide temperature range (275 to 370 K), offering a promising foundation for high-performance, stable next-generation all-solid-state energy storage devices.
AB - The branched network-driven ion solvating quasi-solid polymer electrolytes (QSPEs) are prepared via one-step photochemical reaction. A poly(ethylene glycol diacrylate) (PEGDA) is combined with an ion-conducting solvate ionic liquid (SIL), where tetraglyme (TEGDME), which acts like interneuron in the human brain and creates branching network points, is mixed with EMIM-NTf2 and Li-NTf2. The QSPE exhibits a unique gyrified morphology, inspired by the cortical surface of human brain, and features well-refined nano-scale ion channels. This human-mimicking method offers excellent ion transport capabilities through a synaptic branched network with high ionic conductivity (σDC ≈ 1.8 mS cm−1 at 298 K), high dielectric constant (εs ≈ 125 at 298 K), and strong ion solvation ability, in addition to superior mechanical flexibility. Furthermore, the interdigitated microsupercapacitors (MSCs) based on the QSPE present excellent electrochemical performance of high energy (E = 5.37 µWh cm−2) and power density (P = 2.2 mW cm−2), long-term cycle stability (≈94% retention after 48 000 cycles), and mechanical stability (>94% retention after continuous bending and compressing deformation). Moreover, these MSC devices have flame-retarding properties and operate effectively in air and water across a wide temperature range (275 to 370 K), offering a promising foundation for high-performance, stable next-generation all-solid-state energy storage devices.
KW - ion solvation
KW - ionic liquids
KW - ionic liquids
KW - microsupercapacitors
KW - morphology
KW - quasi-solid polymer electrolytes
UR - http://www.scopus.com/inward/record.url?scp=85183760036&partnerID=8YFLogxK
U2 - 10.1002/smll.202308821
DO - 10.1002/smll.202308821
M3 - Article
C2 - 38308357
AN - SCOPUS:85183760036
SN - 1613-6810
VL - 20
JO - Small
JF - Small
IS - 28
M1 - 2308821
ER -