Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators

Siyeon Lee, Heejin Koo, Hong Suk Kang, Keun Hwan Oh, Kwan Woo Nam

Research output: Contribution to journalReview articlepeer-review

7 Scopus citations

Abstract

Lithium-ion batteries (LIBs) have become indispensable energy-storage devices for various applications, ranging from portable electronics to electric vehicles and renewable energy systems. The performance and reliability of LIBs depend on several key components, including the electrodes, separators, and electrolytes. Among these, the choice of binder materials for the electrodes plays a critical role in determining the overall performance and durability of LIBs. This review introduces polymer binders that have been traditionally used in the cathode, anode, and separator materials of LIBs. Furthermore, it explores the problems identified in traditional polymer binders and examines the research trends in next-generation polymer binder materials for lithium-ion batteries as alternatives. To date, the widespread use of N-methyl-2-pyrrolidone (NMP) as a solvent in lithium battery electrode production has been a standard practice. However, recent concerns regarding its high toxicity have prompted increased environmental scrutiny and the imposition of strict chemical regulations. As a result, there is a growing urgency to explore alternatives that are both environmentally benign and safer for use in battery manufacturing. This pressing need is further underscored by the rising demand for diverse binder research within the lithium battery industry. In light of the current emphasis on sustainability and environmental responsibility, it is imperative to investigate a range of binder options that can align with the evolving landscape of green and eco-conscious battery production. In this review paper, we introduce various binder options that can align with the evolving landscape of environmentally friendly and sustainable battery production, considering the current emphasis on battery performance enhancement and environmental responsibility.

Original languageEnglish
Article number4477
JournalPolymers
Volume15
Issue number23
DOIs
StatePublished - Dec 2023

Bibliographical note

Publisher Copyright:
© 2023 by the authors.

Keywords

  • conventional binders
  • lithium-ion battery binder
  • next-generation binders
  • polymer

Fingerprint

Dive into the research topics of 'Advances in Polymer Binder Materials for Lithium-Ion Battery Electrodes and Separators'. Together they form a unique fingerprint.

Cite this