TY - JOUR
T1 - A tryptamine-paeonol hybridization compound inhibits LPS-mediated inflammation in BV2 cells
AU - Jung, Eun Hye
AU - Hwang, Ji Sun
AU - Kwon, Mi Youn
AU - Kim, Kyung Hong
AU - Cho, Hyeongjin
AU - Lyoo, In Kyoon
AU - Shin, Sujeong
AU - Park, Jeong Ho
AU - Han, Inn Oc
N1 - Publisher Copyright:
© 2016 Elsevier Ltd
PY - 2016/11/1
Y1 - 2016/11/1
N2 - In the present study, we synthesized and evaluated the anti-inflammatory effects of three tryptamine (Trm) hybrid compounds, HBU-375, HBU-376 and HBU-379. The Click reaction between the azido-Trm and 2- or 4-propazylated paeonol moiety resulted in HBU-376 and HBU-375, respectively. HBU-379 was generated by hybridizing Trm with propazylated acetyl-syringic acid. HBU-376 and HBU-375 dose-dependently inhibited LPS and caused nitric oxide (NO) generation in BV2 cells, whereas HBU-379 minimally inhibited NO generation, indicating that the paeonol unit plays an important role in the anti-inflammatory effect of Trm hybrid compounds. Although HBU-375 and HBU-376 demonstrated a similar inhibitory effect on LPS-induced NO generation, HBU-376 resulted in less cellular toxicity presumably due to the free phenolic hydroxyl group of paeonol. Therefore, HBU-376 may be a promising anti-inflammatory agent conferring minimal cytotoxicity. HBU-376 significantly and dose-dependently inhibited LPS-induced NO products, NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6, MCP-1 and interleukin-1β mRNA expressions and iNOS and COX-2 protein expressions. However, at the same concentrations, Trm or paeonol individually did not inhibit LPS-mediated production of inflammatory molecules. HBU-376 inhibited both LPS-induced STAT-3 phosphorylation and nuclear factor-kappa B (NF-κB) activation. Furthermore, LPS-mediated DNA binding of c-Rel, p50 and p52 to the NF-κB binding site of the iNOS promoter was inhibited by HBU-376, whereas Trm and paeonol did not inhibit LPS-induced NF-κB activation and DNA binding of c-Rel, p50 and p52. Overall, our data suggest that the Trm-paeonol hybrid compound down-regulates inflammatory responses by inhibiting NF-κB and NF-κB-dependent gene expression. This suggests that it is a potential therapeutic agent for inflammatory diseases of the central nervous system.
AB - In the present study, we synthesized and evaluated the anti-inflammatory effects of three tryptamine (Trm) hybrid compounds, HBU-375, HBU-376 and HBU-379. The Click reaction between the azido-Trm and 2- or 4-propazylated paeonol moiety resulted in HBU-376 and HBU-375, respectively. HBU-379 was generated by hybridizing Trm with propazylated acetyl-syringic acid. HBU-376 and HBU-375 dose-dependently inhibited LPS and caused nitric oxide (NO) generation in BV2 cells, whereas HBU-379 minimally inhibited NO generation, indicating that the paeonol unit plays an important role in the anti-inflammatory effect of Trm hybrid compounds. Although HBU-375 and HBU-376 demonstrated a similar inhibitory effect on LPS-induced NO generation, HBU-376 resulted in less cellular toxicity presumably due to the free phenolic hydroxyl group of paeonol. Therefore, HBU-376 may be a promising anti-inflammatory agent conferring minimal cytotoxicity. HBU-376 significantly and dose-dependently inhibited LPS-induced NO products, NO synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-6, MCP-1 and interleukin-1β mRNA expressions and iNOS and COX-2 protein expressions. However, at the same concentrations, Trm or paeonol individually did not inhibit LPS-mediated production of inflammatory molecules. HBU-376 inhibited both LPS-induced STAT-3 phosphorylation and nuclear factor-kappa B (NF-κB) activation. Furthermore, LPS-mediated DNA binding of c-Rel, p50 and p52 to the NF-κB binding site of the iNOS promoter was inhibited by HBU-376, whereas Trm and paeonol did not inhibit LPS-induced NF-κB activation and DNA binding of c-Rel, p50 and p52. Overall, our data suggest that the Trm-paeonol hybrid compound down-regulates inflammatory responses by inhibiting NF-κB and NF-κB-dependent gene expression. This suggests that it is a potential therapeutic agent for inflammatory diseases of the central nervous system.
KW - BV2
KW - Hybridization
KW - Inflammation
KW - Tryptamine
UR - http://www.scopus.com/inward/record.url?scp=84985998105&partnerID=8YFLogxK
U2 - 10.1016/j.neuint.2016.08.010
DO - 10.1016/j.neuint.2016.08.010
M3 - Article
C2 - 27567737
AN - SCOPUS:84985998105
SN - 0197-0186
VL - 100
SP - 35
EP - 43
JO - Neurochemistry International
JF - Neurochemistry International
ER -